5 research outputs found

    CARMA II: A ground vehicle for autonomous surveying of alpha, beta and gamma radiation

    Get PDF
    Surveying active nuclear facilities for spread of alpha and beta contamination is currently performed by human operators. However, a skills gap of qualified workers is emerging and is set to worsen in the near future due to under recruitment, retirement and increased demand. This paper presents an autonomous ground vehicle that can survey nuclear facilities for alpha, beta and gamma radiation and generate radiation heatmaps. New methods for preventing the robot from spreading radioactive contamination using a state-machine and radiation costmaps are introduced. This is the first robot that can detect alpha and beta contamination and autonomously re-plan around the contamination without the wheels passing over the contaminated area. Radiation avoidance functionality is proven experimentally to reduce alpha and beta contamination spread as well as gamma radiation dose to the robot. The robot’s survey area is defined using a custom designed, graphically controlled area coverage planner. It was concluded that the robot is highly suited to certain monotonous room scale radiation surveying tasks and therefore provides the opportunity for financial savings, to mitigate a future skills gap, and provision of radiation surveys that are more granular, accurate and repeatable than those currently performed by human operators

    Lessons learned: Symbiotic autonomous robot ecosystem for nuclear environments

    Get PDF
    Nuclear facilities have a regulatory requirement to measure radiation levels within Post Operational Cleanout (POCO) around nuclear facilities each year, resulting in a trend towards robotic deployments to gain an improved understanding during nuclear decommissioning phases. The UK Nuclear Decommissioning Authority supports the view that human-in-the-loop robotic deployments are a solution to improve procedures and reduce risks within radiation haracterisation of nuclear sites. We present a novel implementation of a Cyber-Physical System (CPS) deployed in an analogue nuclear environment, comprised of a multi-robot team coordinated by a human-in-the-loop operator through a digital twin interface. The development of the CPS created efficient partnerships across systems including robots, digital systems and human. This was presented as a multi-staged mission within an inspection scenario for the heterogeneous Symbiotic Multi-Robot Fleet (SMuRF). Symbiotic interactions were achieved across the SMuRF where robots utilised automated collaborative governance to work together where a single robot would face challenges in full characterisation of radiation. Key contributions include the demonstration of symbiotic autonomy and query-based learning of an autonomous mission supporting scalable autonomy and autonomy as a service. The coordination of the CPS was a success and displayed further challenges and improvements related to future multi-robot fleets

    Stress-Based Finite Element Methods for Dynamics Analysis of Euler-Bernoulli Beams with Various Boundary Conditions

    No full text
    Abstract In this research, two stress-based finite element methods including the curvature-based finite element method (CFE) and the curvature-derivative-based finite element method (CDFE) are developed for dynamics analysis of Euler-Bernoulli beams with different boundary conditions. In CFE, the curvature distribution of the Euler-Bernoulli beams is approximated by its nodal curvatures then the displacement distribution is obtained by its integration. In CDFE, the displacement distribution is approximated in terms of nodal curvature derivatives by integration of the curvature derivative distribution. In the introduced methods, compared with displacement-based finite element method (DFE), not only the required number of degrees of freedom is reduced, but also the continuity of stress at nodal points is satisfied. In this paper, the natural frequencies of beams with different type of boundary conditions are obtained using both CFE and CDFE methods. Furthermore, some numerical examples for the static and dynamic response of some beams are solved and compared with those obtained by DFE method
    corecore